Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time

نویسندگان

چکیده

In a lossless compression system with target lengths, compressor

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal probabilistic polynomial time compression and the Slepian-Wolf theorem: tighter version and simple proofs

We give simplify the proofs of the 2 results in Marius Zimand’s paper Kolmogorov complexity version of Slepian-Wolf coding, proceedings of STOC 2017, p22–32. The first is a universal polynomial time compression algorithm: on input ε > 0, a number k and a string x, computes in polynomial time with probability 1 − ε a program of length k+O(log(|x|/ε)) that outputs x, provided that there exists su...

متن کامل

Universal Incremental Slepian-Wolf Coding

We present a strategy for Slepian-Wolf coding when the joint distribution of the sources is unknown. The encoders use an incremental transmission policy, and the decoder a universal sequential decision test. We show that the decoder is able to decode shortly after the rates of transmission exceed the Slepian-Wolf bounds. The decoder then send an ACK back to the encoders, terminating transmissio...

متن کامل

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem

We consider the following combinatorial version of the Slepian–Wolf coding scheme. Two isolated Senders are given binary strings X and Y respectively; the length of each string is equal to n, and the Hamming distance between the strings is at most γn. The Senders compress their strings and communicate the results to the Receiver. Then the Receiver must reconstruct both strings X and Y . The aim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2023

ISSN: ['0004-5411', '1557-735X']

DOI: https://doi.org/10.1145/3575807